
Metropolitan Road Traffic Simulation on FPGAs

Justin L. Tripp, Henning S. Mortveit, Anders̊A. Hansson, Maya Gokhale
Los Alamos National Laboratory

Los Alamos, NM 87545
Email: {jtripp, henning, hansson, maya}@lanl.gov

Abstract

This work demonstrates that road traffic simulation
of entire metropolitan areas is possible with reconfig-
urable supercomputing that combines 64-bit micropro-
cessors and FPGAs in a high bandwidth, low latency
interconnect. Previously, traffic simulation on FPGAs
was limited to very short road segments or required
a very large number of FPGAs. Our data stream-
ing approach overcomes scaling issues associated with
direct implementations and still allows for high-level
parallelism by dividing the data sets between hard-
ware and software across the reconfigurable super-
computer. Using one FPGA on the Cray XD1 super-
computer, we are able to achieve a 12.8× speed up
over the AMD microprocessor. This result paves the
way for accelerating other large infrastructure simu-
lations.

1. Introduction

Modern society relies on a set of complex, inter-
related and inter-dependent infrastructures. Los
Alamos National Laboratory has over the past ten
years developed a sophisticated simulation suite for
simulating various infrastructure components, such
as road networks (TRANSIMS [11]), communication
networks (AdHopNet [1]), and the spread of disease
in human populations (EpiSims [5]). These power-
ful simulation tools can help policy-makers understand
and analyze inter-related dynamical systems and sup-
port decision-making for better planning, monitoring,
and proper response to disruptions. TRANSIMS, for
example, can simulate the traffic of entire cities, with
people traveling in cars on road networks. It is based

on interacting cellular automata (CA), and requires the
use of large computer clusters for efficient computa-
tion.

TRANSIMS is a tool for large-scale traffic simula-
tion and analysis of entire cities. A short description of
how it operates is as follows: First, a syntheticpopula-
tion is created based on survey data for the given city.
It is created in a such a way that all statistical quan-
tities and averages considered are consistent with the
survey data. Examples of such quantities are age dis-
tributions, household sizes, income distributions, and
car ownership distributions. In the next stage, real-
istic travel plansare made for all the individuals for
a twenty-four hour day. An example plan could be:
1) bring kids to school, 2) go to work, 3) pick up
kids, 4) stop at the grocery store, 5) drive home. The
router coordinates the plans of all individuals to pro-
duce realistictravel routeswith realistic travel times.
The router operates together with themicro-simulator
which is the module responsible for moving entities
around. TRANSIMS uses the actual transportation in-
frastructure of the city, so a route could look like: 1)
start at A, 2) drive to B, 3) walk to C, 4) take shuttle
to D. Further information can be found at [11] along
with descriptions of a recent study of the Portland
metro area. Our FPGA implementation accelerates the
micro-simulator and is presently limited to cars. The
details of the micro-simulator are given in the next sec-
tion.

The Portland TRANSIMS study is representative of
a large traffic micro-simulation [2]. The Portland road
network representation has roughly124, 000 road seg-
ments with average length about250 meters. Assum-
ing that there are on average1.5 lanes in each direction
on a road segment and using the TRANSIMS standard

7.5 meter cell length, there are roughly6.25 million
road cells. For cities like Chicago, Houston, and Los
Angeles this number is larger by a factor of3× to10×.

In this work we study the acceleration of the road
network simulation through an FPGA implementa-
tion. Since the simulation is parallel, with independent
agents that make decisions based on local knowledge,
it seems natural to map to the large-scale spatial par-
allelism offered by FPGAs. The high degree of regu-
larity found in the road network is another reason that
this application is well suited application to FPGAs. In
contrast, other networks such as ad hoc wireless com-
munication networks or social contact networks rele-
vant for transmission of contagious disease are much
more irregular and dynamic.

2. Related Work

FPGAs have previously been applied to the traffic
simulation problem. The earliest system, by George
Milne [6,10], simulated road networks by directly im-
plementing their behavior in hardware. Milne’s direct
implementation uses Algotronix’s CAL FPGAs to cre-
ate a long single-lane road of traffic. The cars can be
placed on the road and their behavior with respect to
each other simulated. Results of the simulation are
obtained using read-back from each of the chips used
in the simulation. Cars were able to have two speeds
(go/stop) and their behavior was determined based on
the presence of their nearest neighbor. The direct im-
plementation approach has a very high degree of con-
currency that is limited by the amount of hardware
available and the level of data visibility required by
the simulation.

A more recent system, by Marc Bumble [3], imple-
ments a generalized system for parallel event-driven
simulation. His system consists of an event generator,
an event queue, a scheduler, and a unifying communi-
cations network in each processing element. Each of
the processing elements can be built in reconfigurable
hardware at a cost of 30–34 Altera Apex FPGAs. The
traffic simulation is calculated by streaming data into
processing elements. Each processing element is ca-
pable of simulating one source, intersection, or des-
tination node with the associated outbound roads of
traffic. Bumble states that a system composed of 8000
processing elements could simulate a large traffic net-

work (at a cost of 240,000 FPGAs).
Bumble does not address the scalability of his ap-

proach, the visibility of the simulated traffic or how
data is transfered in and out of the system. Also, his
road models are limited to single-lanes with simple
four-way intersections. This approach does not lend
itself to the simulation of metropolitan areas.

The work presented here differs from previous ap-
proaches in three ways. First, we are using simulation
models which are currently in production use. TRAN-
SIMS models include acceleration, stochastic slow-
down, different velocities and cars with routes. Sec-
ond, we extend our simulation to entire metropolitan
areas rather than specialized configuration with a small
number roads and intersections. Previously, the cost of
FPGA traffic simulations at the metropolitan scale was
too expensive, so as a third point we will examine the
cost of transferring the data between the microproces-
sors and FPGA. All of these differences elp determine
the utility of FPGAs in the context of large-scale sim-
ulations such as TRANSIMS.

3. CA Traffic Modeling

The TRANSIMS road network simulator, which is
based on [7–9], can best be described as a cellular
automaton computation on a semi-regular grid or cell
network: The representation of the city road network
is split into nodes and links. Nodes correspond to loca-
tions where there is a change in the road network such
as an intersection or a lane merging point. Nodes are
connected by links that consist of one or more unidi-
rectional lanes (see Figure 3). A lane is divided into
road cells each of which are7.5 meters long. One cell
can hold at most one car, and a car can travel with
velocity v ∈ {0, 1, 2, 3, 4, 5} cells per iteration step.
The positions of the cars are updated once every it-
eration step using a synchronous update, and each it-
eration step advances the global time by one second.
The basic driving rules for multi-lane traffic in TRAN-
SIMS can be described by a four-step algorithm. In
each step we consider a single celli in a given lane
and link. Note that our model allows passing on the
left and the right. To avoid cars merging into the same
lane, cars may only change lane to the left on odd time
steps and only change lane to the right on even time
steps. This convention, along with the four algorithm

2

Figure 1. CA traffic in TRANSIMS

steps described below, produces realistic traffic flows
as demonstrated by TRANSIMS.

3.1. Local driving rules

The four basic driving rules of the micro-simulator
are given in the following. We let∆(i) andδ(i) de-
note the cell gap in front of celli and behind celli,
respectively.

1. Lane Change Decision:Odd time stept: If cell i
has a car and a left lane change isdesirable(car
can go faster in target lane) andpermissible(there
is space for a safe lane change) flag the car/cell
for a left lane change. The case of even num-
bered time steps is analogous. If the cell is empty
nothing is done.

2. Lane Change:Odd time stept: If there is a car in
cell i, and this car is flagged for a left lane change
then clear celli. Otherwise, if there is no car in
cell i and if the right neighbor of celli is flagged
for a left lane change then move the car from the
neighbor cell to celli. The case of even time steps
t is analogous.

3. Velocity Update:Each celli that has a car updates
that car’s velocity using the two-step sequence:

• v := min(v + 1, vmax(i),∆(i)) (accelera-
tion)

• If [UniformRandom() < pbreak] and[v >
0] thenv := v− 1 (stochastic deceleration).

4. Position Update: If there is a car in celli with
velocity v = 0, do nothing. If celli has a car
with v > 0 then clear celli. Else, if there is a
car δ(i) + 1 cells behind celli and the velocity
of this car isδ(i) + 1 then move this car to cell
i. The nature of the previous velocity update pass
guarantees that there will be no collisions.

All cells in a road network are updated simultaneously.
The steps 1–4 are performed for each road cell in the
sequence they appear. Each step above is thus a clas-
sical cellular automatonΦi. The whole combined up-
date pass is a product CA, that is, a functional compo-
sition of classical CAs:

Φ = Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1

Note that the CAs used for the lane change and the
velocity update are stochastic CAs. The rationale for
having stochastic braking is that it produces more re-
alistic traffic. The fact that lane changes are done
with a certain probability avoids slamming behavior
where whole rows of cars change lanes in complete
synchrony.

3.2. Intersections and Global Behavior

The four basic rules handle the case of straight road-
ways. TRANSIMS uses travel routes to generate real-
istic traffic from a global point of view. Each trav-
eler or car is assigned a route that he/she has to follow.
Routes mainly affect the dynamics near turn-lanes and
before intersections as cars need to get into a lane that
will allow them to perform the desired turns.

Figure 2. Intersections in TRANSIMS

To incorporate routes the road links need to have
IDs assigned to them. Moreover, to keep computa-
tions as local as possible, cells need to hold informa-
tion about the IDs of upcoming left and right turns.

The following describes the extension of the four
basic driver rules to handle turn-lanes and intersec-
tions.

Modification of the lane change rule:

3

We consider a car in celli. As before, lane changes
to the left/right are only permissible on odd/even num-
bered time steps. We refer to the adjacent candidate
cell as the target cell.

1. If the link ID of the target cell matches the next
leg of the travel route and differs from the current
link ID a lane change is desirable (desirable turn-
lane).

2. Else, if the target cell has a link ID that does not
match the next leg of the route and it differs from
the current link ID of the route, a lane change is
not desirable (wrong turn).

3. Else, if the current cell’s nextLeftLink (nex-
tRightLink) ID matches the next leg of the route
and the simulation time is an odd (even) integer,
a lane change is desirable (prepare for turn-lane
or intersection).

4. Else, apply the basic lane changing rule described
above.

Note that this handles lane changing prior to turn-
lanes as well as intersections.

Intersection Logic

An intersection has a number of incoming and out-
going links associated to it. A simplified set of turn-
ing rules (assuming a four-way intersection) are as fol-
lows:

1. Only cars in an incoming left(right)-most lane of
link can turn left(right). A car that turns left(right)
must initially use the left(right)-most lane of the
target link.

2. A car in any incoming lane can go straight. A car
that goes straight must use the same lane number
in the target link as it used in the incoming link.
It is assumed that the lane counts for the relevant
links agree.

More intricate intersection geometries can of course
occur but the basic idea remains the same. When inter-
sections are close it is natural to modify the first rule:
when a left turn is followed by an immediate right turn
the rightmost lane is chosen as target lane for the left
turn.

An intersection has a set of immediate adjacent road
cells. We refer to these as theintersection road cells.
The intersections operate by dynamically assigning the
front and back neighbor cell IDs of the intersection
road cells. This allows us to naturally extend the driv-
ing rules for multi-lane traffic to intersections without
any modifications. The subset of the intersection road
cells that come from incoming links have their front
neighbor cell set to zero by default. The same holds for
the back neighbor of the intersection cells belonging to
outgoing links. The intersections operate by establish-
ing front/back pairs between cells to accommodate the
routes. Stop intersections and traffic signal intersec-
tions impose additional constraints on which cars are
allowed to drive at what times by controlling the cor-
responding connections.

4. Implementations

Normally the TRANSIMS micro-simulator is exe-
cuted on a cluster of computer workstations [12]. In
this work, the simulation is divided between multiple
microprocessors and one or more FPGAs. The system
has been designed to take advantage of the computa-
tional strengths of microprocessors and FPGAs.

4.1. Direct Implementation

With CAs, a straight forward way to take advantage
of the concurrency is to build the CA directly in hard-
ware. The direct implementation of traffic simulation
CA instantiates a separate road cell for each road cell
in the traffic network. The road cell provides its cur-
rent state to its neighbors so that all the cells in that
local neighborhood can calculate their next state. Fig-
ure 4 shows a road network and the basic structure of
a basic road cell.

The road cell consists of three main parts: the com-
putation engine, the current state and a state machine.
The state machine drives the computation engine using
the current state and inputs from external road cells to
compute the road cell’s next state. The local driving
rules define the operations of the computation engine.

The four rules for traffic simulation are executed us-
ing six different states in the state machine. Figure 3
shows how the different steps in the rules are executed
in the state machine. Each rule in the computation

4

Link

Node
Merge

Intersection
Node

Road Cell

Velocity
Update

Lane
Change

Random 5 Cell Neighbor Info

Neighbor
Info

State

State
Machine

State Id

Computation Engine

Neighbor
Info

Figure 4. Road Network and Cell Design

Calculate delta

Collision

LaneChange

Calculate Delta
Determine
 Permission
Determine Desire

Calculate
 stochastic
 slowdown

if p < threshold
 state−−

Stochastic
Exchange cars

if car ahead,
 state = Vgap

Calculate
 slowdown for
 collision

Change Lanes Calculate
 Acceleration
state++

LaneMove Accelerate

Position

Figure 3. Computation required for the six
states

engine requires a single cycle to calculate except for
Velocity Update(Rule 3). The velocity update rule
has three separate operations: Accelerate, Collision,
Stochastic. Each of these operations take a cycle to
complete.

In the LaneChange state, the computation engine
calculates the lane change decision (Rule 1). To do
this the∆(i) andδ(i) are calculated from the forward
and backward neighborhoods. Likewise the neighbors
in the left and right neighborhoods execute the same
calculation. The computation engine then determines
whether it is permissible for a car to come to this lane
and whether the current car desires to change lanes.
These results are used in the LaneMove (Rule 2) state
to actually perform the lane change. Both lanes have to
agree that it is both permissible (where we are going)
and desirable (if the gap ahead of us is smaller than

the gap in the neighboring lanes) for a lane change to
happen.

Rule 3 requires three states, Accelerate, Collision,
and Stochastic. In the Accelerate state, a car’s veloc-
ity is calculated using the following formula:vnext =
min(v+1, vmax(i)). vmax(i) is the maximum velocity
for this particular road cell, which may be lower than
the globalvmax (e.g., a local speed limit).

The Accelerate state is followed by the Collision
state which ensures that the next state does not ex-
ceed the gap ahead of the car. It determinesvnext =
min(vnext,∆(i)). This prevents the car from acceler-
ating into a car in front of it—avoiding a collision.

The final step of the velocity update determines if
the car should randomly slow down. This stochastic
step provides some realism in the behavior of drivers
and makes their speeds less predictable. If a random
value is less than a threshold,pbreak, then its speed will
be lowered as described in Section 3.

After the velocity update rule is finished, the state
machine executes an update of the car positions. To
do this, a cell determines if a car exists in its backward
neighborhood that has a velocity that will bring it to
this cell’s location. If it does, then the cell sets its ve-
locity and car id to the arriving car. Otherwise, if no
car is arriving at this cell, the cell sets its velocity and
car id to zero.

4.2 Streaming Approach

As discussed in Section 2, the direct implementa-
tion approach does not scale well, because each road
cell must be physically instantiated on the FPGA, re-
quiring a large number of FPGAs to simulate even

5

a moderate-sized city. An alternative approach is to
let a computational unit, anupdate engine, process a
streamof road data and subsequently output astream
of updated data. In this way, the update engine sweeps
across the road data, and the number of road cells is
no longer limited to available FPGA area. Instead, the
only limiting factor is the size of the memory to hold
the state of the road cells and the associated access
time. Thus, a streaming hardware design becomes in-
herently scalable and can handle large-scale road net-
works.

In our streaming design, we partition the road net-
work in such a way that straight road sections are
processed by the hardware, while intersections and
merging nodes are updated by a software module.
Most importantly, this hybrid hardware/software strat-
egy means that hardware processing is governed by a
simple, homogeneous set of traffic rules, while all road
plan decisions are handled by software.

traffic flow update direction

overlap region II overlap region I

Figure 5. Road Link Structure.

The data representing straight lanes is fed to the
hardware update engine against the flow of traffic,
starting from the end of each lane. However, due to
the partitioning of the road network, the cars in the
last vmax cells of each lane cannot be updated since
the engine lacks knowledge about the network topol-
ogy and the road plans. For this reason we define an
overlap region I(see Figure 5), which is the lastvmax

cells of each lane, and because of the processing di-
rection of the update engine, these cells are processed
first. Although cars that are inside an overlap region at
the beginning of the hardware computation cannot be
updated by the engine, it is important to note that the
engine can move other carsinto these first cells during
its computational pass. Naturally, the software module
needs to update the position and velocity of cars inside
the overlap regions at the end of each hardware update
pass.

The software must also write information to the first
vmax cells of each lane, which corresponds to new

cars moving into a lane (arriving from other lanes, ei-
ther through an intersection or by merging). However,
computing velocities and positions of these new cars
requires complete knowledge of the firstvmax cells of
each lane. In a sense, the firstvmax cells of each lane
then constitute another overlap region (see overlap re-
gion II in Figure 5) that needs to be touched by soft-
ware at the end of each pass. However, the hardware
can only move carsfrom these first cells, and if the
cells were empty at the beginning of the update pass,
the software module does not need to read back the
updated status. Also, in order to minimize the need for
memory synchronization, we have chosen to process
only single-lane traffic in hardware.1 In fact, 90% of
all roads in Portland are one-lane roads, which means
that most road cells are still updated in hardware.

The hardware design implements a memory inter-
face, whose main responsibility is to generate read and
write addresses used for accessing the memories. Both
the read and write addresses are generated by counters.
The counter associated with the read starts from the
lowest address each new time the update engine is re-
quested to process data, and it continues to count until
the software module schedules a new update request.
The counter associated with the write address, on the
other hand, monitors a status signal provided by the
update engine, and stops counting as soon as the en-
gine signals it is done.

Inside the compute engine, the car’s velocity is up-
dated first, and then its position. Of course, if no car
exists in the incoming road cell, or if the incoming
road cell belongs to an overlap region, the incoming
velocity is passed out unchanged. In all other cases,
the engine initially tests whether an acceleration is per-
missible. There is also a probability of stochastic de-
celeration. As previously explained, a car slows down
if a pseudo-random number is less than a predefined
threshold value,pbreak.2 In order to test for accelera-
tion permissibility, incoming cars are streamed into a
shift register, and this register is scanned to find the
maximum number of cells a car can move ahead.

1Clearly, multiple-lane traffic requires overlap regions longer
thanvmax cells since the lane changing rules assume knowledge of
preceding cells—and not only succeeding cells (which is sufficient
in the case of single-lane traffic).

2The random number is internally generated by a standard 32-
bit linear feedback shift register.

6

Update engine

Read Write

MemoryMemory

Addr_genAddr_gen

Enable

Figure 6. Structure of a straightforward
streaming implementation.

Scan
cells
and
output

Velocity
update

Shift register

Figure 7. The Position Update

The streaming engine calculates a car’s position by
shifting the car one cell every clock cycle (see Fig-
ure 7) until its newly calculated velocity matches the
distance from the end of the shift register, which is
vmax+1 cells long. At the point when there is a match,
the change state block exports all car information to
the destination road cell. This pipelining design makes
it possible for the update engine to read and write one
word of road data every clock cycle. If we have access
to N concurrent memories, it would advantageous to
instantiateN parallel replicas of the compute engine.

5. Using the Cray XD1

The Cray XD1 supercomputer combines high per-
formance microprocessors, a high speed, low latency
interconnect network, and reconfigurable computing
elements. This provides an environment where data
transfer latencies and bandwidth associated with I/O
busses is greatly reduced. The tight integration of
processors and reconfigurable computing changes the
meaning of reconfigurable supercomputing. A super-
computing problem can be split between the CPU and
FPGA with close synchronization and fast communi-

cation between software and hardware.

5.1. Machine Description

A single chassis of the Cray XD1, consists of 12
AMD Opteron 200 series processors, with up to 8 Gi-
gabytes of memory per processor. The processors are
paired into a SMP processor module as shown in Fig-
ure 8. Each processor has 1 or 2 Cray RapidArray links
that connect to a fully non-blocking Cray RapidArray
fabric switch. The switch provides either 48 GB/s or
96 GB/s total bandwidth between the SMP pairs. The
RapidArray fabric switch is able to achieve 1.8µs MPI
latency between SMPs.

MemoryMemory Memory

Six SMP

Pairs

FPGA

Hyper−
Transport

Link

RapidArray Interconnect System
24 RapidArray Links

RapidArrayRapidArray

Opteron
Processor

Opteron
Processor

Link Link

Figure 8. XD1 Processor Module

As shown in Figure 9, one Xilinx Virtex-II Pro (30
or 50) is available for each processor module from the
RapidArray fabric. An FPGA has 3.2 GB/s link to the
RapidArray fabric, which connects to the local proces-
sors or to other processors on the fabric. The FPGA
also has dedicated 2 GB/s RocketIO links to the neigh-
boring SMP module in the same chassis. Four QDR
SRAMs are connected to each FPGA providing 3.2
GB/s of bandwidth at 200 MHz [4].

The FPGAs are accessed under Linux using Linux
device drivers. Cray’s FPGA API provides functions
for loading, resetting, and executing FPGA designs.
Functions are also provided for mapping the FPGA’s
memory into the operating system’s memory space
and for accessing registers defined on the FPGA.

5.2. TRANSIMS on the XD1

Since the FPGAs and processors have tighter in-
tegration than most FPGA board systems (e.g., PCI

7

RapidArray

2
GB/s

2
GB/s

2
GB/s

2
GB/s

QDRII
RAM

HyperTransport
to SMP

3.2
GB/s

3.2
GB/s

Neighbor
Compute Module

Neighbor
Compute Module

QDRII

QDRII

QDRII

RAM

RAM

RAM

FPGA
Accelerator

3.2 GB/s

RapidArray
Processor

Figure 9. FPGA Expansion Module

boards), we have partitioned the road traffic simulation
between the FPGA and CPUs available in the system.
Single-lane roads make up 90% of the road segments
in the Portland network. The FPGAs are tailored to
process single-lane traffic. The CPUs in the XD1 are
responsible for data synchronization between the hard-
ware and the software, and simulating intersections.
Based on the size of the data required, two FPGAs are
needed for simulation so that all of Portland can fit in
the memories available.

The implementation on the XD1 is an improvement
our earlier Osiris based design [13] due in part to better
bandwidth between the memories and the FPGA. The
QDR SRAMS on the XD1 are fully dual ported and
allow for simulaneous reads and writes to any mem-
ory location. This provides a large amount of external
memory bandwidth to the FPGA.

Despite the large amount of bandwidth on the Rap-
idArray network between the FPGA and the Opterons
CPUs, the simulation attempts to reduce the required
amount of data traffic. Synchronization of data only
occurs if there are cars on a particular road segment
and only in the overlap (shared) data regions. This al-
lows for better trade-off between calculation and avail-
able bandwidth.

6. Results

The results for two different implementations of
road traffic simulation are presented here. The first, di-
rect implementation, creates a physical circuit for each

road cell to be simulated. The second, streaming im-
plementation, creates a small number of parallel en-
gines and the data is streamed through in time. The
two implementations represent two different extremes
in concurrency and scalability.

6.1. Direct Implementation

The direct implementation was written in VHDL
and synthesized to EDIF using Synplify v7.6. The
EDIF description was passed into Xilinx ISE v6.2 to
produce the results reported.

The results for the direct implementation for multi-
and single-lane circular traffic are described in Table 1.
The hardware implementation of single-lane traffic has
only four states, since single-lanes do not require the
extra hardware for lane changes. The two-lane imple-
mentation that includes the hardware to perform lane
changes is 63% larger in area. As the table shows, both
Xilinx chips can hold (at least) 400 road cells.

Table 1. Direct Implementation Design Re-
sults

One-lane Two-lane
V2-6k V2p100 V2-6k V2p100

Cells 650 650 400 640
LUTs/Cell 104 97 169 128
Clock(MHz) 48.68 64.17 35.53 62.8
Slices 33790 31576 33790 40973
(% of Slices) (99%) (71%) (99%) (92%)

Table 2 compares the results for the two-lane traf-
fic implementation achieved by the Xilinx XC2V6000
(V2-6k) and the XC2VP100 (V2p100) to a software
implementation running on a 2.2 GHz Opteron pro-
cessor. The V2-6k simulates the road cells at a rate
415.8× the Opteron and the V2p100 simulates traffic
just short of1175×. This speedup comes primarily
from the fact that the FPGA implementation is execut-
ing all cells concurrently, and the software implemen-
tation, which may have instruction level parallelism,
calculates each cell individually.

Despite the large speedup that is possible using the
direct implementation, the FPGA can only handle a
small number of road cells. Using the data from the
Portland TRANSIMS study, we know that there are

8

Table 2. Direct Implementation Results Com-
parison for Two Lanes

2.2GHz
V2-6k V2p100 Opteron

Cells 400 640 2 Million
Cells/sec 2.37× 109 6.70× 109 5.7× 106

Speedup 415.8 1175.4 1.0

roughly 6.25 million road cells. Simulating Portland
would require at least 12,400 FPGAs to simulate the
entire city. Also, the direct implementation does not
provide high visibility to the simulation data.

6.2. Streaming Implementation

The streaming implementation was written in
VHDL and placed in VHDL interfaces provided by
Cray for the RapidArray and QDR SRAMS (release
1.1). All of this was synthesized using Xilinx XST
and the bitstream generated by Xilinx ISE v6.2.

Table 3. Comparison of Streaming with Soft-
ware Simulation

2.2GHz
V2p50 Opteron

Slices 1857
Clock(MHz) 180 2199
Cells/sec 7.2× 108 5.7× 106

Speedup 126.3 1.0

The results shown in Table 3 were timed using a
timer register, called the Time Stamp Counter (TSC),
which measures processor ticks at the processor clock
rate. The 64-bit read-only counter is extremely accu-
rate, as it is implemented as a Model-Specific Regis-
ter, inside the CPU. The overhead of using this register
is extremely low and the TSC register on the 2.2GHz
Opteron has a resolution of 450 picoseconds.

The design on the FPGA includes four streaming
engines (limited by the number of available memories)
and operates at a rate126.3× the speed of a compara-
ble software version running on a 2.2 GHz Opteron.
Table 4, which includes the cost of transferring data to

and from the FPGAs, gives a more accureat speedup
of 12.8× faster than software alone. This speedup has
been estimated by using 1.3 GB/s as the transfer rate,
which Cray has been able to achieve. We have only
been able to achieve transfers at a much lower rate and
are currently working with Cray to improve our use of
the RapidArray to achieve their same rate.

Although the streaming implementation is a fac-
tor of 100 slower than the direct approach, it is still
enough of an improvement to provide significant over-
all speedup. Additional speedup is still possible with
more FPGA boards. The most crucial limiting factor
in this implementation is the number of memory banks
on each board; additional banks would allow us to in-
crease the number of simultaneous data streams. In
fact, with the current design, one compute engine re-
quires less than 2% of chip area. Since each compute
node has four concurrent memories, it is advantageous
to instantiate four parallel engines, but already at this
moderate level of parallelism, we run into a bandwidth
bottleneck.

The hardware performs extremely well with the
straight lane segments, which make up 70–90% of the
road segments in a given simulation. FPGA aided sim-
ulation done in the scalable, streaming approach may
be the fastest way to do extremely large metro-area
traffic simulations, especially in light of the advances
being made in combined microprocessor/FPGA com-
puting systems. The cellular nature of the road seg-
ments meshes well with hardware, and a combined
hardware/software approach for the full-fledged sim-
ulation fits each of their computational strengths.

Table 4. Comparison of Streaming including
Communication Costs (estimated)

2.2GHz
V2p50 Opteron

Cells/sec 7.3× 107 5.7× 106

Speedup 12.8 1.0

7. Conclusions and Future Work

Although the amount of logic available in FPGAs
continues to grow, large scale road traffic simulation

9

still cannot be simulated using a direct hardware im-
plementation of the CA. In 1993, George Milne’s
SPACE could simulate 1024 road cells. Using more
detailed models, today we can only fit 640 cells in
a Virtex II Pro 100. In order to simulate whole
metropolitan areas, three times more logic is needed.
However, for metropolitan road networks, the stream-
ing results found on the XD1 show that a speedup
of 12.8× over a pure software simulation can be ob-
tained.

Our approach exploits the low latency, high band-
width interconnect network of the Cray XD1 to par-
tion the the problem between software and hardware.
A streaming implementation of single lane road seg-
ments is mapped to the hardware. The rest of the sim-
ulation (e.g., intersections, multiple lanes) is handled
by the microprocessors. This speedup is a gain since
TRANSIMS normally requires 40 to 60 cluster ma-
chines for simulation and achieving a speedup of four
would like take more than four times as many ma-
chines.

The next step with accelerating this TRANSIMS
simulation is to add one or more SMP modules to the
system and determine the cost of synchronizing data
communication over MPI. It may also be possible to
have a single SMP module communicate to the other
FPGAs via the RapidArray Fabric. The Cray XD1 sys-
tem provides an interesting testbed for reconfigurable
supercomputing applications.

Acceleration of TRANSIMS opens the door to
a whole range of simulations where FPGAs or
other dedicated hardware can provide computational
speedup. Many simulation systems today, have a sim-
ilar structure to the one found in TRANSIMS: There
are highly complex computations best suited for soft-
ware and a large collection of structured simple calcu-
lations as in the road network simulator. The TRAN-
SIMS accelerator provides a prime example as to how
FPGAs can aid a large class of large-scale simulations.

References

[1] K. A. Atkins, C. L. Barret, R. J. Beckman, S. G. Eu-
bank, N. W. Hengarter, G. Istrate, A. V. S. Kumar,
M. V. Marathe, H. S. Mortveit, C. M. Reidys, P. R.
Romero, R. A. Pistone, J. P. Smith, P. E. Stretz, C. D.
Engelhart, M. Droza, M. M. Morin, S. S. Pathak,
S. Zust, and S. S. Ravi. ADHOPNET: Integrated tools

for end-to-end analysis of extremely large next gener-
ation telecommunication networks. Technical report,
Los Alamos National Laboratory, Los Alamos, NM,
2003.

[2] C. L. Barrett, R. J. Beckman, K. P. Berkbigler,
K. R. Bisset, B. W. Bush, K. Campbell, S. Eubank,
K. M. Henson, J. M. Hurford, D. A. Kubicek, M. V.
Marathe, P. R. Romero, J. P. Smith, L. L. Smith, P. E.
Stretz, G. L. Thayer, E. Van Eeckhout, and M. D.
Williams. TRansportation ANalysis SIMulation sys-
tem (TRANSIMS) portland study reports. December
2002.

[3] M. D. Bumble. A Parallel Architecture for Non-
deterministic Discrete Event Simulation. PhD thesis,
Pennsylvania State University, 2001.

[4] Cray Inc., Seattle, WA USA.Cray XD1 Datasheet,
September 2004.

[5] S. Eubank, H. Guclu, V. S. A. Kumar, M. V.Madhav,
A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling
disease outbreaks in realistic urban social networks.
Nature, 429(6988):180–184, May 13, 2004.

[6] G. Milne, P. Cockshott, G. McCaskill, and P. Bar-
rie. Realising massively concurrent systems on the
space machine. In K. Pocek and D. Buell, editors,FP-
GAs for Custom Computing Machines, pages 26–32,
Napa, CA USA, April 1993. IEEE Computer Society,
IEEE Computer Society Press. Inspec 4630521.

[7] K. Nagel and M. Schreckenberg. A cellular automa-
ton model for freeway traffic.Journal de Physique I,
2:2221–2229, December 1992.

[8] K. Nagel, M. Schreckenberg, A. Schadschneider, and
N. Ito. Discrete stochastic models for traffic flow.
Physical Review E, 51:2939–2949, April 1995.

[9] M. Rickert, K. Nagel, M. Schreckenberg, and A. La-
tour. Two lane traffic simulations using cellular au-
tomata.Physica A, 231:534–550, October 1996.

[10] G. Russell, P. Shaw, and J. McInnes. Rapid simulation
of urban traffic using fpgas. 1994.

[11] L. L. Smith. Transims home page. 2002.
[12] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband,

U. A. Ranawake, and C. V. Packer. BEOWULF: A
parallel workstation for scientific computation. In
Proceedings of the 24th International Conference on
Parallel Processing, pages I:11–14, Oconomowoc,
WI, 1995.

[13] J. L. Tripp, H. S. Mortveit, M. S. Nassr, A. A. Hans-
son, and M. Gokhale. Acceleration of traffic simu-
lation on reconfigurable hardware. Technical Report
LA-UR 04-2795, Los Alamos National Laboratory,
Los Alamos, NM USA, 2004.

10

